Electrician

مهندسی برق-الکترونیک-کنترل-ابزار دقیق-انتقال و توزیع-مکاترونیک-کامپیوتر-مکانیک-IT

Electrician

مهندسی برق-الکترونیک-کنترل-ابزار دقیق-انتقال و توزیع-مکاترونیک-کامپیوتر-مکانیک-IT

ترانسفورماتور

ترانسفورماتور (Transformer) وسیله‌ای است که انرژی الکتریکی را به وسیله دو یا چند سیم‌پیچ و از طریق القای الکتریکی از یک مدار به مداری دیگر منتقل می‌کند. به این صورت که جریان جاری در مدار اول (اولیه ترانسفورماتور) موجب به وجود آمدن یک میدان مغناطیسی در اطراف سیم‌پیچ اول می‌شود, این میدان مغناطیسی به نوبه خود موجب به وجود آمدن یک ولتاژ در مدار دوم می‌شود که با اضافه کردن یک بار به مدار دوم این ولتاژ می‌تواند به ایجاد یک جریان در ثانویه بینجامد.

ولتاژ القا شده در ثانویه VS و ولتاژ دو سر سیم‌پیچ اولیه VP دارای یک نسبت با یکدیگرند که به طور آرمانی برابر نسبت تعداد دور سیم پیچ ثانویه به سیم‌پیچ اولیه‌است:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

به این ترتیب با اختصاص دادن امکان تنظیم تعداد سیم‌پیچ‌های ترانسفورماتور, می‌توان امکان تغییر ولتاژ در ثانویه ترانس را فراهم کرد.

یکی از کاربردهای بسیار مهم ترانسفورماتورهای کاهش جریان پیش از خطوط انتقال انرژی الکتریکی است. دلیل استفاده از ترانسفورماتور در ابتدای خطوط این است که همه هادی‌های الکتریکی دارای میزان مشخصی مقاومت الکتریکی هستند, این مقاومت می‌تواند موجب اتلاف انرژی در طول مسیر انتقال انرژی الکتریکی شود. میزان تلفات در یک هادی با مجذور جریان عبوری از هادی رابطه مستقیم دارد و بنابر این با کاهش جریان می‌توان تلفات را به شدت کاهش داد. با افزایش ولتاژ در خطوط انتقال به همان نسبت جریان خطوط کاهش می‌یابد و به این ترتیب هزینه‌های انتقال انرژی نیز کاهش می‌یابد, البته با نزدیک شدن خطوط انتقال به مراکز مصرف برای بالا بردن ایمنی ولتاژ خطوط در چند مرحله و باز به وسیله ترانسفورماتورها کاهش می‌یابد تا به میزان استاندارد مصرف برسد. به این ترتیب بدون استفاده از ترانسفورماتورها امکان استفاده از منابع دوردست انرژی فراهم نمی‌آمد.

ترانسفورماتورها یکی از پربازده‌ترین تجهیزات الکتریکی هستند به طوری که در برخی ترانسفورماتورهای بزرگ بازده به ۹۹.۷۵٪ نیز می‌رسد. امروزه از ترانسفورماتورها در اندازه‌ها و توان‌های مختلفی استفاده می‌شود از یک ترانسفورماتور بند انگشتی که در یک میکروفن قرار دارد تا ترانسفورماتورهای غول‌پیکر چند گیگا ولت-آمپری. همه این ترانسفورماتورها اصول کار یکسانی دارند اما در طراحی و ساخت متفاوت هستند.

شکل-1 یک ترانسفورماتور توزیع بر روی یک تیر.

 اصول پایه

به طور کلی یک ترانسفورماتور بر دو اصل استوار است:

  • اول اینکه, جریان الکتریکی متناوب می‌تواند یک میدان مغناطیسی متغییر پدید آورد (الکترومغناطیس)
  • و دوم اینکه, یک میدان مغناطیسی متغییر در داخل یک حلقه سیم‌پیچ می‌تواند موجب به وجود آمدن یک جریان الکتریکی متناوب در یک سیم سیم‌پیچ شود.

ساده‌ترین طراحی برای یک ترانسفورماتور در شکل 2 آمده‌است. جریان جاری در سیم‌پیچ اولیه موجب به وجود آمدن یک میدان مغناطیسی می‌گردد. هر دو سیم‌پیچ اولیه و ثانویه بر روی یک هسته که دارای خاصیت نفوذپذیری مغناطیسی بالایی است (مانند آهن) پیچیده شده‌اند. بالا بودن نفوذپذیری هسته موجب می‌شود تا بیشتر میدان تولید شده توسط سیم‌پیچ اولیه از داخل هسته عبور کرده و به سیم‌پیچ ثانویه برسد.

قانون القا

میزان ولتاژ القا شده در سیم‌پیچ ثانویه را می‌توان به وسیله قانون فاراده به دست آورد:

V_{S} = N_{S} \frac{d\Phi}{dt}

در فرمول بالا VS ولتاژ لحظه‌ای, NS تعداد دورهای سیم‌پیچ در ثانویه و Φ برابر مجموع شار مغناطیسی است که از یک دور از سیم‌پیچ می‌گذرد. با توجه به این فرمول تا زمانی که شار در حال تغییر از دو سیم پیچ اولیه و ثانویه عبور کند ولتاژ لحظه‌ای در اولیه یک ترانسفورماتور آرمانی از فرمول زیر بدست می‌آید:

V_{P} = N_{P} \frac{d\Phi}{dt}

و با توجه به تعداد دور سیم‌پیچ‌های اولیه و ثانویه و این معادله ساده می‌توان میزان ولتاژ القایی در ثانویه را بدست آورد:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}
شکل-2 یک ترانسفورماتور کاهنده آرمانی و مسیر عبور شار در هسته

معادله ایده‌ال توان

اگر سیم‌پیچ ثانویه به یک بار متصل شده باشد جریان در سیم‌پیچ ثانویه جاری خواهد شد و به این ترتیب توان الکتریکی بین دو سیم‌پیچ منتقل می‌شود. به طور ایده‌آل ترانسفورماتور باید کاملاً بدون تلفات کار کند و تمام توانی که به ورودی وارد می‌شود به خروجی برسد وبه این ترتیب توان ورودی و خروجی باید برابر باشد و در این حالت داریم:

Pincoming = IPVP = Poutgoing = ISVS

و همچنین در حالت ایده‌آل خواهیم داشت:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} = \frac{I_{P}}{I_{S}}

بنابر این اگر ولتاژ ثانویه از اولیه بزرگتر باشد جریان ثانویه باید به‌همان نسبت از جریان اولیه کوچکتر باشد. همانطور که در بالا اشاره شد در واقع بیشتر ترانسفورماتورها بازده بسیار بالایی دارند و به این ترتیب نتایج به دست آمده از این معادلات به مقادیر واقعی بسیار نزدیک خواهد بود.

مبحث فنی

تعاریف ساده شده بالا از بسیاری از مباحث پیچیده درباره ترانسفورماتورها گذشته‌است.

در یک ترانسفورماتور آرمانی، ترانسفورماتور دارای یک هسته بدون مقاومت مغناطیسی و دو سیم‌پیچ بدون مقاومت الکتریکی است. زمانی که ولتاژ به ورودی‌های اولیه ترانسفورماتور اعمال می‌شود برای به وجود آمدن شار در مدار مغناطیسی هسته, جریانی کوچکی در سیم‌پیچ اولیه جاری می‌شود. از آنجایی که در ترانسفورماتور ایده‌آل هسته فاقد مقاومت مغناطیسی است این جریان قابل چشم پوشی خواهد بود در حالی که در یک ترانسفورماتور واقعی این جریان بخشی از تلفات ترانسفورماتور را تشکیل خواهد داد.

ملاحظات عملی

شار پراکندگی

در یک ترانسفورماتور آرمانی شار مغناطیسی تولید توسط سیم‌پیچ اول به طور کامل توسط سیم‌پیچ دوم جذب می‌شود اما در واقع بخشی از شار مغناطیسی در فضای اطراف پراکنده می‌شود. به شاری که در حین انتقال از مسیر خود جدا می‌شود شار پراکندگی(leakage flux) می‌گویند. این شار پراکندگی موجب به وجود آمده اثر خود القا در سیم‌پیچ‌ها می‌شود و به این ترتیب موجب می‌شود که در هر سیکل, انرژی در سیم‌پیچ ذخیره شده و در نیمه پایانی سیکل آزاد شود. این اثر به طور مستقیم باعث ایجاد افت توان نخواهد شد اما به دلیل ایجاد اختلاف فاز موجب ایجاد مشکلاتی در تنظیم ولتاژ خواهد شد و به این ترتیب باعث خواهد شد تا ولتاژ ثانویه دقیقاً نسبت واقعی خود با ولتاژ اولیه حفظ نکند؛ این اثر به ویژه در بارهای بزرگ خود را نشان خواهد داد. به همین دلیل ترانسفورماتورهای توزیع طوری ساخته می‌شوند تا کمترین میزان تلفات پراکندگی را داشته باشند.

با این حال در برخی کاربردها, وجود تلفات پراکندگی بالا پسندیده‌است. در این ترانسفورماتورها با استفاده از روش‌هایی مانند ایجاد مسیرهای مغناطیسی طولانی، شکاف‌های هوایی یا مسیرهای فرعی مغناطیسی اقدام به افزایش شار پراکندگی می‌کنند. دلیل افزایش عمدی تلفات پراکندگی در این ترانسفورماتورها قابلیت بالای این نوع ترانسفورماتورها در تحملاتصال کوتاه است. از این گونه ترانسفورماتورها برای تغذیه بارهای دارای مقاومت منفی مانند دستگاه‌های جوش (یا دیگر تجهیزات استفاده کننده از قوس الکتریکی)، لامپ‌های بخار جیوه و تابلوهای نئون یا ایجاد ایمنی در بارهایی که احتمال بروز اتصال کوتاه در آنها زیاد است استفاده می‌شود.

تاثیر بسامد

مشتق زمان در قانون فاراده نشان می‌دهد که شار در یک سیم‌پیچ، برابر انتگرال ولتاژ ورودی است. در یک ترانسفورماتور ایده‌آل افزایش شار در سیم‌پیچ به طور خطی در نظر گرفته می‌شود اما در عمل شار مغناطیسی با سرعت نسبتا زیاد افزایش پیدا می‌کند این افزایش تا جایی ادامه دارد که شار به نقطه اشباع مغناطیسی هسته می‌رسد. به خاطر افزایش ناگهانی جریان مغناطیس کننده در یک ترانسفورماتور واقعی، همه ترانسفورماتورها باید همیشه با جریان متناوب سینوسی (نه پالسی) تغذیه شوند.

معادله عمومی EMF برای ترانسفورماتورها[نیازمند منبع]

اگر شار مغناطیسی را سینوسی در نظر بگیریم رابطه بین ولتاژ E، بسامد منبع f، تعداد دور N، سطح مقطع هسته A و ماکزیمم چگالی مغناطیسی B از رابطه عمومی EMF و به صورت زیر به دست می‌آید:

 E={\frac {2 \pi f N a B} {\sqrt{2}}} \!=4.44 f N a B

برای یک ترانسفورماتور در چگالی مغناطیسی ثابت، EMF با افزایش بسامد افزایش می‌یابد که تاثیر آن را می‌توان از معادله عمومی EMF محاسبه کرد. بنابراین با استفاده از ترانسفورماتورها در بسامد بالاتر می‌توان بهره‌وری آنها را نسبت به وزن‌شان افزایش داد چراکه یک ترانسفورماتور با حجم هسته ثابت در بسامد بالاتر می‌تواند میزان توان بیشتری را بین سیم‌پیچ‌ها جابجا کند و تعداد دور سیم‌پیچ کمتری نیز برای ایجاد یک امپدانس ثابت نیاز خواهد بود. با این حال افزایش بسامد می‌تواند موجب به وجود آمدن تلفات مضایف مانند تلفات هسته و اثر سطحی در سیستم شود. در هواپیماها و برخی تجهیزات نظامی از بسامد 400 هرتز استفاده می‌شود چراکه با این کار گذشته از افزایش برخی تلفات می‌توان حجم تجهیزات را کاهش داد.

به طور کلی استفاده از یک ترانسفورماتور در ولتاژ نامی ولی بسامد بیش از نامی موجب کاهش جریان مغناطیس کننده می‌شود و به این ترتیب در بسامدی کمتر از بسامد نامی جریان مغناطیس کننده می‌تواند در حد زیادی افزایش یابد. البته استفاده از ترانسفورماتورها در بسامدهای بیشتر یا کمتر از بسامد نامی باید قبل از اقدام، مورد ارزیابی قرار گیرد تا شرایط ایمن برای کار ترانس مثل سنجش ولتاژها، تلفات و استفاده از سیستم خنک‌کننده خاص بررسی شود. برای مثال ترانسفورماتورها باید به وسیله رله‌های کنترل محافظتی ولتاژ به ازای بسامد مجهز شوند تا در مقابل اضافه ولتاژهای ناشی از افزایش بسامد محافظت شوند.

 تلفات انرژی

یک ترانسفورماتور ایده‌آل هیچ تلفاتی نخواهد داشت و در واقع بازدهی برابر 100٪ دارد. با این حال ترانسفورماتورهای واقعی نیز جزو بهره‌ورترین تجهیزات الکتریکی محسوب می‌شود به طوری که نمونه‌های آزمایشی ترانسفورماتورهایی که با بهرگیری از ابر رساناساخته شده‌اند به بازدهی برابر 99.85٪ دست یافته‌اند. به طور کلی ترانسفورماتورهای بزرگتر از بازده بالاتری برخوردارند و ترانسفورماتورهایی که برای مصارف توزیعی مورد استفاده قرار می‌گیرند از بازدهی در حدود 95٪ برخوردارند در حالی که ترانسفورماتورهای کوچک مانند ترانسفورماتورهای موجود در اداپتورها بازدهی در حدود 85٪ دارند. تلفات به وجود آمده در ترانسفورماتور با توجه به عوامل به وجود آورنده یا محل اتلاف انرژی به این صورت طبقه بندی می‌شوند:

 مقاومت سیم‌پیچ‌ها

جریانی که در یک هادی جاری می‌شود با توجه به میزان مقاومت الکتریکی هادی می‌تواند موجب به وجود آمدن حرارت در محل عبور جریان شود. در بسامدهای بالاتر اثر سطحی و اثر مجاورت نیز می‌توانند تلفات مضایفی را در ترانسفورماتور به وجود آورند.

تلفات پسماند (هیسترزیس)

هر بار که جهت جریان الکتریکی به‌خاطر وجود بسامد عوض می‌شود با توجه به جنس هسته, مقدار کمی انرژی در هسته باقی می‌ماند. به این ترتیب برای یک هسته با جنس ثابت این نوع تلفات با میزان بسامد تناسب دارد و با افزایش بسامد تلفات پسماند هسته نیز افزایش می‌یابد.

جریان گردابی

شکل-3 یک ترانسفورماتور ایده‌آل به عنوان المانی در مدار

مواد فرومغناطیس معمولاً هادی‌های الکتریکی خوبی نیز هستند و بنابراین هسته ترانسفورماتورمی‌تواند مانند یک مدار اتصال کوتاه شده عمل کند. بنابراین حتی با القای میزان کمی ولتاژ, جریان در هسته به شدت بالا می‌رود. این جریان جاری در هسته گذشته از به وجود آوردن تلفات الکتریکی موجب به وجود آمدن حرارت در هسته نیز می‌شود. جریان گردابی در هسته با مجذور بسامد منبع رابطه مستقیم و با مجذور ضخامت ورق هسته رابطه معکوس دارد. برای کاهش تلفات گردابی در هسته, هسته‌ها را ورقه ورقه کرده و آنها را نسبت به یکدیگر عایق می‌کنند.

تغییر شکل بر اثر مغناطیس

شار مغناطیسی در یک ماده فرومغناطیس موجب حرکت نسبی ورقه‌های هادی نسبت به یکدیگر می‌شود. در صورت محکم نبودن این ورقه‌ها این اثر می‌تواند موجب ایجاد صدایی شبیه وز وز در هنگام کار کردن ترانسفورماتور شود به این اثر تغییر شکل بر اثر میدان مغناطیسی یا Magnetostriction می‌گویند. این اثر می‌تواند موجب به وجود آمدن گرما در اثر اصطکاک بین صفحات نیز شود.

تلفات مکانیکی

به دلیل وجود تغییر شکل بر اثر مغناطیس در یک ترانسفورماتور بین قطعات ترانسفورماتور نوعی حرکت به وجود می‌آید این تحرک نیز به نوبه خود موجب به وجود آمدن تلفات مکانیکی در ترانسفورماتورخواهد شد. در صورتی که قطعات موجود در ترانسفورماتور به خوبی در جای خود محکم نشده باشند, تحرکات مکانیکی آنها نیز افزایش یافته و در نتیجه تلفات مکانیکی نیز افزایش خواهد یافت.


مدار معادل

شکل-4 مدار معادل یک تراسنفورماتور

محدودیت‌های فیزیکی یک ترانسفورماتور واقعی به صورت یک مدار نمایش داده می‌شوند. این مدار معادل از تعدادی از عوامل به وجود آورنده تلفات یا محدودیت‌ها و یک ترانسفورماتور ایده‌آل تشکیل شده‌است. تلفات توان در سیم‌پیچ یک ترانسفورماتور به طور خطی تابعی از جریان هستند و به راحتی می‌تواند آنها را به صورت مقاومت‌هایی سری با سیم‌پیچ‌های ترانسفورماتور نمایش داده شود؛ این مقاومت‌ها RS و RP هستند. با بررسی خواص شار پراکندگی می‌توان آن را به صورت خود القاهای XP و XS نشان داد که به صورت سری با سیم‌پیچ ایده‌آل قرار می‌گیرند. تلفات آهنی از دو نوع تلفات گردابی (فوکو) و پسماند (هیسترزیس) تشکیل شده. در بسامد ثابت این تلفات با مجذور شار هسته نسبت مستقیم دارند و از آنجایی که شار هسته نیز تقریباً با ولتاژ ورودی نسبت مستقیم دارد این تلفات را می‌توان به صورت مقاومتی موازی با مدار ترانسفورماتور نشان داد. این مقاومت همان RC است.

هسته‌ایی با نفوذپذیری محدود نیازمند جریان IM خواهد بود تا همچنان شار مغناطیسی را در هسته برقرار کند. بنابراین تغییرات در جریان مغناطیس کننده با تغییرات در شار مغناطیسی هم فاز خواهد بود و به دلیل اشباع پذیر بودن هسته, رابطه بین این دو خطی نخواهد بود. با این حال برای ساده کردن این تاثیرات در بیشتر مدارهای معادل این رابطه خطی در نظر گرفته می‌شود. در منابع سینوسی شار مغناطیسی 90 درجه از ولتاژ القایی عقبتر خواهد بود, بنابراین این اثر را می‌توان با القاگر XM در مدار نشان داد که به طور موازی با تلفات آهنی هسته RC قرار می‌گیرد. RC و XM را در برخی موارد با هم به صورت یک شاخه در نظر می‌گیرند و آن را شاخه مغناطیس کننده می‌نامند. اگر سیم‌پیچ ثانویه ترانسفورماتور را مدار باز کنیم تمامی جریان عبوری از اولیه ترانسفورماتور جریان I0خواهد بود که از شاخه مغناطیس کننده عبور خواهد کرد این جریان را جریان بی‌باری نیز می‌نامند.

مقاومت‌های موجود در طرف ثانویه یعنی RS و XS نیز باید به طرف اولیه منتقل شوند. این مقاومت‌ها در واقع معادل تلفات مسی و پراکندگی در طرف ثانویه هستند و به صورت سری با سیم پیچ ثانویه قرار می‌گیرند.

مدار معادل حاصل را مدار معادل دقیق می‌نامند گرچه در این مدار معادل نیز از برخی ملاحضات پیچیده مانند اثرات غیرخطی چشم پوشی می‌کند.

 انواع

ساخت انواع مختلف ترانسفورماتورها به منظور رفع اهداف استفاده از آنها در کاربردهای متفاوت می‌باشد. در این میان برخی از انواع ترانسفورماتورها بیشتر مورد استفاده قرار می‌گیرند که می‌توان به نمونه‌ها زیر اشاره کرد:

 اتوترانسفورماتور

اتوترانسفورماتور به ترانسفورماتوری گفته می‌شود که تنها از یک سیم‌پیچ تشکیل شده‌است. این سیم‌پیچ دارای دو سر ورودی و خروجی و یک سر در میان است. به طوری که می‌توان گفت سیم‌پیچ کوتاه‌تر(که در ترنس کاهنده سیم‌پیچ ثانویه محسوب می‌شود) قسمتی از سیم‌پیچ بلندتر است. در این گونه ترانسفورماتورها تا زمانی که نسبت ولتاژ-دور در دو سیم‌پیچ برابر باشد ولتاژ خروجی از نسبت سیم‌پیچ تعداد دور سیم‌پیچ‌ها به ولتاژ ورودی به دست می‌آید.

با قرار دادن یک تیغه لغزان به جای سر وسط ترانس, می‌توان نسبت سیم‌پیچ‌های اولیه و ثانویه را تا حدودی تغییر داد و به این ترتیب ولتاژ پایانه خروجی ترانسفورماتور را تغییر داد. مزیت استفاده از اتوترانسفورماتور کم هزینه تر بودن آن است چراکه به جای استفاده از دو سیم‌پیچ تنها از یک سیم‌پیچ در آنها استفاده می‌شود.

 ترانسفورماتور چند فازه

برای تغذیه بارهای سه فاز می‌توان از سه ترانسفورماتور جداگانه استفاده کرد یا آنکه از یک ترانسفورماتور سه فاز استفاده کرد. در یک ترانسفورماتور سه فاز مدارهای مغناطیسی با هم مرتبط هستند و بنابر این هسته دارای شار مغناطیسی در سه فاز متفاوت است. برای چنین هسته‌هایی می‌توان از چندین شکل مختلف برای هسته استفاده کرد که این شکل‌های مختلف هر یک دارای مزایا و معایبی هستند و در مواردی خاص کاربرد دارند.

 طبقه‌بندی

به دلیل وجود کاربردهای متفاوت برای ترانسفورماتورها, آنها ار بر حسب پارامترهای متفاوتی طبقه‌بندی می‌کنند:

  • بر حسب رده توان: از کسری از ولت-آمپر تا بیش از هزار مگا ولت-آمپر.
  • بر حسب محدوده بسامد: بسامد قدرت, بسامد صوتی, بسامد رادئویی
  • بر حسب رده ولتاژ: از چند ولت تا چند صد کیلوولت
  • بر حسب نوع خنک کنندگی: خنک کننده هوا, روغنی, خنک کنندگی با فن, خنک کنندگی آب.
  • بر حسب نوع کاربرد: منبع تغذیه, تطبیق امپدانس, تثبیت کننده ولتاز و جریان خروجی یا ایزوله کردن مدار.
  • برحسب هدف نهایی کاربرد: توزیع, یکسوسازی, ایجاد قوس الکتریکی, ایجاد تقویت کننده.
  • بر حسب نسبت سیم‌پیچ‌ها: افزاینده, کاهنده, ایزوله کننده (با نسبت تقریبا یکسان در دوسیم‌پیچ), متغیر.

 ساختمان

 هسته

 هسته لایه لایه شده

لایه لایه کردن هسته ترانس جریان گردابی را به شدت کاهش می‌دهد.

ترانسفورماتورها مورد استفاده در کاربردهای قدرت یا بسامد بالا (رادیویی) معمولاً از هسته با جنس فولاد سیلیکاتی با قابلیت نفوذپذیری مغناطیسی بالا استفاده می‌کنند[نیازمند منبع]. قابلیت نفوذپذیری مغناطیسی در فولاد بارها بیشتر از نفوذپذیری در خلاء است و به این ترتیب با استفاده از هسته‌های فولادی جریان مغناطیس کننده مورد نیاز برای هسته به شدت کاهش می‌یابد و شار در مسیری کاملا نزدیک به سیم‌پیچ‌ها محبوس می‌شود. سازندگان ترانسفورماتورهای اولیه به سرعت متوجه این موضوع شدند که استفاده از هسته یک پارچه باعث افزایش تلفات گردابی در هسته ترانسفورماتور می‌شود و در طراحی‌های خود از هسته‌هایی استفاده کردند که از دسته‌های عایق شده آهن تولید شده بود. در طراحی‌هایی بعدی با استفاده از ورق‌های نازک آهن که نسبت به یکدیگر عایق شده بودند, تلفات در ترانسفورماتور باز هم کاهش یافت. از این روش در ساخت هسته امروزه نیز استفاده می‌شود. همچنین با استفاده از معادله عمومی ترانسفورماتور می‌توان نتیجه گرفت که کمترین سطح اشباع در هسته با سطح مقطع کوچکتر ایجاد می‌شود.

گرچه استفاده از هسته‌های با لایه‌های نازک‌تر تلفات را کاهش می‌دهد, اما از طرفی هزینه ساخت ترانسفورماتور را افزایش می‌دهد. بنابراین از هسته‌های با لایه‌های نازک معمولاً در بسامدهای بالا استفاده می‌شود. با استفاده از برخی انواع هسته‌های با لایه‌های بسیار نازک امکان ساخت ترانسفورماتورهایی برای کاربرد در مصارف تا ۱۰ کیلوهرتز پدید می‌آید.

نوعی متداول از هسته‌های لایه لایه, از قطعاتی E شکل که با قطعاتی I شکل یک هسته را به وجود می‌آورند تشکیل شده. این هسته‌ها را هسته‌های E-I می‌نامند. این هسته‌ها گرچه تلفات را افزایش می‌دهند اما به علت آسانی مونتاژ, هزینه ساخت هسته را کاهش می‌دهند. نوع دیگری از هسته‌ها, هسته‌های C شکل هستند. این هسته از قرار دادن دو قطعه C شکل در مقابل یکدیگر تشکیل می‌شود. این هسته‌ها این مزیت را دارند که تمایل شار برای عبور از هر قطعه از هسته برابر است و این مزیت باعث کاهش یافتن مقاومت مغناطیسی می‌شود.

پسماند در یک هسته فولادی به معنای باقی ماندن خاصیت مغناطیسی در هسته پس از قطع شدن توان الکتریکی است. زمانی که جریان دوباره در هسته جاری می‌شود این پسماند باقی مانده در هسته تا زمانی که کاهش یابد موجب به وجود آمدن یک جریان هجومی در ترانس می‌شود. تجهیزات حفاظتی مانند فیوزها باید طوری انتخاب شوند که به این جریان هجومی اجازه عبور دهند.

ترانسفورماتورهای توزیع می‌توانند با استفاده از هسته‌های با قابلیت نفوذ پذیری مغناطیسی بالا تلفات بی باری را کاهش دهند. هزینه اولیه هسته بعدها با صرفه‌جویی که در مصرف انرژی و افزایش طول عمر ترانس می‌شود جبران خواهد شد.

هسته‌های یکپارچه

هسته‌هایی که از آهن پودر شده ساخته شدند در مدارهایی که با بسامد بالاتر از بسامد شبکه تا چند ده کیلوهرتز کار می‌کنند کاربرد دارند. این هسته دارای قابلیت نفوذ پذیری مغناطیسی بالا و همچنین مقاومت الکتریکی بالا هستند. برای بسامدهایی بالاتر از باند VHF از هسته‌های غیر رسانای فریت استفاده می‌شود. برخی از ترانسفورماتورهای بسامد رادیویی از هسته‌های متحرک استفاده می‌کنند که این امکان را به وجود می‌آورد که ضریب اتصال هسته قابل تغییر باشد.

 هسته‌های حلقوی

ترانسفورماتور هسته حلقوی کوچک

ترانسفورماتورهای حلقوی دور حلقه‌ای ساخته می‌شوند.جنس این هسته بسته به بسامد مورد استفاده ممکن است از نوارهای بلند فولاد سیلیکاتی، پرمالوی پیچیده شده دور یک چنبره، آهن تقویت شده یا فریت باشد.ساختار نواری باعث چینش بهینه مرز_دانه‌هامی‌شود که این امر با کاهش رلوکتانس هسته موجب افزایش بهره وری ترنسفورماتور می‌گردد.شکل حلقوی بسته باعث از بین رفتن فاصله هوایی در هسته‌هایی با ساختار E-I می‌شود.سطح مقطع حلقه عموما به صورت مربعی یا مستطیلی می‌باشند، البته هسته‌هایی با سطح مقطع دایروی با قیمت بالا نیز وجود دارند. سیم پیچیهای اولیه و ثانویه به صورت فشرده پیچیده می‌شوند و تمام سطح حلقه را می‌پوشانند. با این کار می‌توان طول سیم مورد نیاز را به حداقل رساند. در توانهای برابر ترانسفورماتورهای حلقوی از انواع E-I -که ارزانتر میباشند- بازده بیشتری دارند.دیگر مزایای ترانسفورماتورهای حلقوی به قرار زیرند:اندازه کوچکتر (در حدود نصف)، وزن کمتر(در حدود نصف)، اغتشاش (صدای هوم) پائین(ایده آل برای استفاده در تقویت کننده‌های صوتی)، میدان مغناطیسی کمتر(در حدود یک دهم)، تلفات بی باری پائین(مناسب برای مدارها در حالت آماده بکار-standby-). از معایب آنها به قیمت بیشتر و توان نامی محدود می‌توان اشاره کرد. در بسامدهای بالا هسته‌های حلقوی فریت مورد استفاده قرار می‌گیرند. فریت قابلیت کار در بسامدهای چند ده کیلوهرتز تا یک مگا هرتز را دارا میباشد. با بکارگیری فریت تلفات، اندازه فیزیکی، و وزن منابع نیروی سوئیچ مدکاهش می‌یابد. ایراد دیگر ترانسفورماتورهای حلقوی هزینه بالای سیم پیچی در آنهاست. در نتیجه آنها در توان‌های نامی بیشتر از چند کیلوولت آمپر کاربرد بسیار کمی دارند.


اهمیت ترانسفورماتور

اهمیت ترانسفورماتورها در صنعت برق و شبکه‌هیا صنعتی، برکسی پوشیده نیست. امروزه یکی از ملزومات اساسی در انتقال و توزیع الکتریکی در جهان ترانسفورماتورها، می‌باشند. 
ترانسفورماتورها در اندازه‌ها و توان‌های مختلفی جهت تغییر سطح ولتاژ الکتریکی به‌منظور کاهش تلفات ولتاژ در فرآیند انتقال و توزیع انرژی الکتریکی به‌کار می‌روند. 
در صنعت سیمان، به‌عنوان یکی از مصرف کننده‌های بزرگ برق و استفاده از سطوح ولتاژ مختلف در آن، استفاده از ترانسفور ماتورها یکی از ارکان اجتناب‌ناپذیر می‌باشد. 
در این مقاله به اختصار ترانسفورماتورها، ساختمان آنها، تعمیرات و نگهداری آنها مورد بررسی قرار گرفته است. 
● ساختمان ترانسفور ماتور 
ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها می‌توان به سه دسته کوچک، متوسط و بزرگ دسته‌بندی کرد. ساختمان ترانسفورماتورهای بزرگ و متوسط به‌دلیل مسائل فاظتی و عایق‌بندی و امکانات موجود، نسبت به انواع کوچک آن پیچیده‌تر است. اجزاء تشکیل دهنده یک ترانسفورماتور به شرح زیر است: 
● هسته‌ ترانسفورماتور 
هسته ترانسفورماتور متشکل از ورقه‌های نازکی است که سطح آنها با توجه به قدرت ترانسفور ماتورها محاسبه می‌شود. برای کم کردن تلفات آهنی هسته‌ ترانسفور ماتور را نمی‌توان به‌طور یکپارچه ساخت. بلکه معمولاً آنها را از ورقه‌های نازک فلزی که نسبت به یکدیگر عایق هستند، می‌سازند این ورقه‌ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر ۴.۵ درصد) که دارای قابلیت هدایت الکتریکی و قابلیت هدایت مغناطیسی زیادی است ساخته می‌شوند . زیاد بودن مقدار سیلیسیم، باعث شکننده شدن ورق‌ها می‌شود. برای عایق کردن ورق‌های ترانسفورماتور، در گذشته از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می‌شد، استفاده می‌کردند، اما امروز در هنگام ساختن و نورد این ورقه‌ەا یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت ۲ تا ۲۰ میکرون به‌عنوان عایق بر روی آنها مالیده می‌شود، که باعث پوشاندن روی ورقه‌ها می‌گردد. علاوه بر این، از لاک مخصوصی نیز برای عایق کردن یک طرف ورقه‌ها استفاده می‌شود. تمامی ورقه‌های ترانسفور ماتور دارای یک لایه عایق هستند. در هنگام محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقه‌های ترانسفور ماتورها را به ضخامت‌های ۰.۳۵ و ۰.۵ میلیمتر و در اندازه‌های استاندارد می‌سازند. باید دقت کرد که سطح عایق شده‌ٔ ورقه‌های ترانسفور ماتور همگی در یک جهت باشند (مثلاً همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه‌ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود. 
● سیم پیچ‌ ترانسفور ماتور 
معمولاً برای سیم‌پیچ اولیه و ثانویه ترانسفور ماتور از هادی‌های مسی با عایق (روپوش) لاکی استفاده می‌کنند، که با سطح مقطع گرد و اندازه‌های استاندارد وجود دارند و با قطر آنها مشخص می‌شوند. در ترانسفور ماتورهای پرقدرت از هادی‌های مسی که به‌صورت تسمه هستند استفاده می‌شوند و ابعاد این گونه هادی‌ها نیز استاندارد است. 
سیم پیچی ترانسفور ماتور به این ترتیب است که سر سیم‌پیچ‌ها را به‌وسیله روکش عایق‌ها از سوراخ‌های قرقره خارج می‌کنند، تا بدین ترتیب سیم‌ها، قطع (خصوصاً در سیم‌های نازک و لایه‌های اول) یا زخمی نشوند، علاوه بر این بهتر است رنگ روکش‌ها نیز متفاوت باشد تا در ترانسفور ماتورهای دارای چندین سیم پیچ، به‌راحت بتوان سر هم سیم‌پیچ را مشخص کرد. بعد از اتمام سیم‌پیچی یا تعمیر سیم‌پیچ‌ها ترانسفور ماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم‌پیچ‌های اولیه و ثانویه آزمایش کرد. 
● قرقره‌ ترانسفور ماتور 
برای حفاظت و نگهداری از سیم پیچ‌های ترانسفورماتور خصوصاً در ترانسفورماتورهای کوچک باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد. قرقره معمولاً از کاغذ عایق سخت، فیبرهای استخوانی یا مواد ترموپلاستیک می‌سازند. قره‌قره‌هائی که از جنس ترموپلاستیک هستند، معمولاً یک تکه ساخته می‌شوند ولی برای ساختن قرقره‌های دیگر آنها را در چند قطعه تهیه و سپس بر روی همدیگر سوار می‌کنند. بر روی دیواره‌های قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم‌پیچ از آنها خارج شود. 
اندازه قرقره باید با اندازهٔ ورقه‌های ترانسفورماتور متناسب باشد و سیم‌پیچ نیز طوری بر روی آن پیچیده شود، که از لبه‌های قرقره مقداری پائین‌تر قرار گیرد تا هنگام جا زدن ورقه‌های ترانسفور ماتور، لایه‌ٔ روئی سیم پیچ صدمه نبیند. اندازه قرقره‌های ترانسفور ماتورها نیز استاندارد هستند، اما در تمام موارد، با توجه به نیاز، قرقره مناسب را می‌توان طراحی کرد. 
● نکات قابل توجه قبل از حمل ترانس‌های قدرت 
پس از پایان مراحل ساخت و انجام موفقیت‌آمیز آزمایشات کارخانه‌ای، قبل از جابه‌جائی ترانسفورماتور، از محلی به محل دیگر و قبل از بارگیری باید اقدامات زیر به روی ترانسفور ماتور انجام گیرد، به‌منظور کاهش ابعاد و وزن ترانسفورماتور و نیز از نظر فنی و محدودیّت‌های ترافیکی، باید تجهیزات جنبی ترانسفورماتور ”کنسرواتور (منبع انبساط)، بوشینگ‌ها و...“ باز و به‌طور جداگانه بسته‌بندی و آماده حمل گردند. اما خود ترانسفورماتور به طریق زیر حمل می‌گردد. 
الف ـ حمل با روغن: ترانسفورماتورهای کوچک و ترانسفورماتورهائی که وزن و ابعاد آنها مشکلاتی را از نظر حمل ایجاد نمی‌نمایند، معمولاً با روغن حمل می‌گردند. در این حال سطح روغن باید حدوداً ۱۵ سانتیمتر پایین‌تر از درپوش اصلی (سقف) ترانسفورماتور قرار داشته باشد. 
▪ توجه: 
فاصله ۱۵ سانتیمتری فوق‌الذکر در مورد کلیه ترانسفورماتورها یکسان نبوده و توصیه می‌شود و به دستورالعمل کارخانه سازنده مراجعه شود. 
لازم به ذکر است که در هنگام حمل روغن، قسمت فعال (Active Part) ترانسفورماتور باید کاملاً در داخل روغن قرار گیرد. 
به‌منظور جلوگیری از نفوذ رطوبت و هوا به داخل ترانسفورماتور، فضای بین روغن و سقف ترانسفورماتور را با هوای خشک و یا گاز نیتروژن با فشار حدود ۲/۰ بار در هوای ۲۰ درجه پر می‌کنند. لازم به ذکراست که گاز نیتروژن باید کاملاً خشک باشد، در این حالت با نصب یک محفظه سیلیکاژل بسته (آب‌بندی شده) بر روی ترانسفورماتور عمل جذب رطوبت انجام می‌شود. ضمناً جهت جلوگیری از پاشیدن روغن به داخل سیلیکاژل در طول حمل از یک وسیله حفاظتی استفاده می‌شود. 
حمل بدون روغن: ترانسفورماتورهای بزرگ بدون روغن حمل می‌گردند. در این موارد پس از تخلیه روغن، ترانسفورماتور را با هوای خشک (دارای رطوبت کمتر از ppmv ۲۵ و نقطه میعان کمتر از ۶۰ ـ درجه سانتیگراد) یا با نیتروژن (با درجه خلوص ۹.۹۹%) پر می‌کنند. لازم به ذکر است که در این حالت نیز در طول حمل باید فشار هوا یا نیتروژن به‌طور مرتب کنترل گردد. 
▪ نکات قابل توجه و مهم در نصب و قبل از راه‌اندازی: 
۱) کنترل ضربه‌نگار 
۲) کنترل فشار هوا 
۳) کنترل نقطه شبنم و اکسیژن 
۴) کنترل استقرار ترانسفورماتور بر روی فوندانسیون 
۵) کنترل تجهیزات جنبی ترانسفورماتور شامل بوشینگ، سیستم خنک کننده، رادیاتور، فن، پمپ، کنسرواتور و ملحقات آن 
۶) سیستم تنفسی 
۷) شیر اطمینان 
۸) ترمومترها شامل ترمومتر روغن (کالیبره کردن ترمومتر) و ترمومتر سیم پیچ 
۹) تپ چنجر 
۱۰) رله‌بو خهلتس 
• روغن ترانسفور ماتور 
روغن‌های ترانسفور ماتور عمدتاً ترکیبات پیچیده‌ای از هیدروکربن‌های مشتق از نفت خام می‌باشند و به جهت دارا بودن خواص مورد نیاز، این نوع روغن‌ها جهت ترانسفورماتورها مناسب‌تر تشخیص داده شده‌اند. 
خواص مورد نیاز برای روغن‌های ترانسفور ماتور به‌طور خلاصه عبارتند از: 
▪ عایق کاری الکتریکی 
▪ انتقال حرارت 
▪ قابلیت خاموش کردن قوس‌الکتریکی 
▪ پایداری شیمیائی 
▪ سیل کردن ترانسفورماتور 
▪ جلوگیری از خوردگی 
▪ در مورد سفارش خرید روغن برای ترانسفورماتورها دو مورد مهم را مدنظر قرار می‌دهیم. 
▪ انتخاب نوع روغن ترانسفورماتور 
نوع روغن و کیفیت آن، براساس طراحی ترانسفورماتورها می‌باشد. به‌عنوان مثال در یکی از بررسی‌ها نوعی چسب که در داخل ترانسفورماتور به‌کار برده شده بود توسط روغن ترانس حل گردید و باعث شد که ذرات چسب داخل روغن پراکنده شود و منجر به کاهش دی‌الکتریک روغن گردد. مورد دیگری که مورد آزمایش قرار گرفت، این بود که کاتالیزور مس و آهن باعث از بین بردن روغن تشخیص داده شده است. بنابراین نوع ترانسفورماتور و مواد به کار رفته در آن درتعیین نوع و کیفیت روغن آن تأثیر زیادی دارد. 
● آلودگی روغن ترانفسورماتورها: 
به‌طور کلی دو نوع آلودگی اصلی در روغن ترانسفور ماتورها عبارتند از: 
۱) مواد معلق در روغن 
۲) آب 
۳) اکسیداسیون روغن 
پس از شناسائی مؤلفه‌های روغن با آزمایش‌های مختلف، تصمیم به تصفیه یت تعویض روغن اتخاذ می‌گردد. 
به‌طور کلی ۳ نوع آزمایش کلی بر روی روغن ترانسفورماتور انجام می‌گیرد که عبارتند از: 
۱) آزمون‌های فیزیکی 
۲) آزمون‌های شیمیائی 
۳) آزمون‌های قسمت‌های الکتریکی 
برخی از آزمایش‌هائی که باید روی روغن ترانسفورماتورها، انجام گیرد در زیر آمده است. 
۱) تست اسیدیته 
۲) تست گازهای حل شده در روغن 
۳) تست کشش سطحی 
۴) تست بی‌فنیل پلی کلرید (pcb) 
● تست ولتاژ شکست: 
روغن ترانسفورماتورها معمولاً باید دارای ضریب شکست بیشتر از ۵۰ کیلو ولت باشند، که با انجام آزمایش ولتاژ شکست، نسبت به اندازه‌گیری آن اقدام می‌گردد. اگر این شاخص تا حد مشخصی کمتر از ۵۰ کیلو ولت باشد می‌توان با تصفیه روغن موجود آن را اصلاح کرد، در غیر این صورت باید نسبت به تعویض روغن اقدام نمود. 
● آنالیز گاز کروماتورگرافی: 
با توجه به اینکه مولکول‌های روغن از ترکیبات هیدروکربن ساخته شده‌اند، حرارت یا شکست الکتریکی می‌تواند باعث شکست مولکول‌های روغن و تولید گازهای قابل اشتعالی مثل متان، اتیلن، اتان و سایر گازها شود، که در دراز مدت انفجار ترانسفورماتور را در پی خواهد داشت. تحلیل گاز کروماتوگرافی به اندازه‌گیری میزان گازهای تولید شده در روغن ترانسفورماتور و آنالیز آنها می‌پردازد. 
● تکنولوژی ساخت 
ساخت ترانسفورماتورهای فشار قوی فاقد روغن، در طول عمر یکصد ساله ترانسفور ماتورها، یک انقلاب محسوب می‌شود. ایده استفاده از کابل با عایق پلیمر پلی‌اتیلن، به‌جای هادی‌های مسی دارای عایق کاغذی از ذهن یک محقق سوئدی به نام پرفسور ”Mats lijon“ تراوش کرده است. 
تکنولوژی استفاده از کابل به‌جای هادی‌هادی مسی دارای عایق کاغذی، نخستین بار در سال ۱۹۹۸ در یک ژنراتور فشار قوی به‌نام ”Power Former“ به‌کار گرفته شد. در این ژنراتور بر خلاف سابق که از هادی‌های شمشی (مستطیلی) در سیم‌پیچی استاتور استفاده می‌شد، از هادی‌های گرد استفاده شده است. همان‌طور که از معادلات ماکسول استنباط می‌شود، هادی‌های سیلندری، توزیع میدان‌الکتریکی متقارنی دارند. بر این اساس ژنراتوری می‌توان ساخت که برق را با سطح ولتاژ شبکه تولید کند به‌طوری که نیاز به ترانسفورماتور افزاینده نباشد. در نتیجه این کار، تلفات الکتریکی به میزان ۳۰ درصد کاهش می‌یابد. 
در یک کابل پلیمری فشار قوی، میدان الکتریکی در داخل کابل باقی می‌ماند و سطح کابل دارای پتانسیل زمین می‌باشد. در عین حال میدان مغناطیسی لازم برای کار ترانسفورماتور تحت تأثیر عایق کابل قرار نمی‌گیرد. در یک ترانسفورماتور خشک، با استفاده از تکنولوژی کابل، امکانات تازه‌ای برای بهینه کردن طراحی میدان‌های الکتریکی و مغناطیسی، نیروهای مکانیکی و تنش‌های گرمائی فراهم کرده است. 
در فرآیند تحقیقات و ساخت ترانسفورماتور خشک، در مرحله نخست یک ترانسفورماتور آزمایشی تک فاز با ظرفیت ۱۰ مگا ولت‌آمپر (Dry former)، طراحی، ساخته و آزمایش گردید. 
”Dry former“ اکنون در سطح ولتاژهای از ۳۶ تا ۱۴۵ کیلوولت و ظرفیت تا ۱۵۰ مگاولت آمپر وجود دارد. 
● ویژگی‌های ترانسفورماتورهای خشک 
با پیشرفت تکنولوژی امکان ساخت ترانسفورماتورهای خشک با بازدهی بالا فراهم شده است. 
ترانسفورماتور خشک دارای ویژگی‌های منحصر به فردی است از جمله: 
۱) به روغن برای خنک شدن، یا به‌عنوان عایق الکتریکی نیاز ندارد. سازگاری این نوع ترانسفورماتور با طبیعت و محیط زیست یکی از مهمترین ویژگی‌های مهم آن است. به‌دلیل عدم وجود روغن، خطر آلودگی خاک و منابع آب زیرزمینی و همچنین احتراق و خطر آتش‌سوزی کم می‌شود. 
با حذف روغن و کنترل میدان‌های الکتریکی که در نتیجه آن خطر ترانسفورماتور از نظر ایمنی افراد و محیط زیست کاهش یافته است. امکانات تازه‌ای را از نظر محل نصب ترانسفورماتور فراهم کرده است. به این ترتیب امکان نصب ترانسفورماتور خشک در نقاط شهری و جاهائی که از نظر زیست محیطی حساس هستند، وجود دارد. 
۲) در ترانسفورماتور خشک به‌جای بوشینگ چینی در قسمت‌های انتهائی از عایق سیلیکن را بر (Silicon rubber) استفاده می‌شود. به این ترتیب خطر ترک خوردن چینی بوشینگ و نشت بخار روغن از بین می‌رود. 
۳) کاهش مواد قابل اشتعال، نیاز به تجهیزات گسترده آتش‌نشانی را کاهش می‌دهد. بنابراین از این دستگاه‌ها در محیط‌های سرپوشیده و نواحی سرپوشیده شهری نیز می‌توان استفاده کرد. 
۴) با حذف روغن در ترانسفورماتور خشک، نیاز به تانک‌های روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن کاملاً از بین می‌رود. بنابراین کار نصب آسان‌تر شده و تنها شامل اتصال کابل‌ها و نصب تجهیزات خنک کننده خواهد بود. 
۵) از دیگر ویژگی‌های ترانسفورماتور خشک، کاهش تلفات الکتریکی است. یکی از راه‌های کاهش تلفات و بهینه کردن طراحی ترانسفورماتور، نزدیک کردن ترانسفورماتور به محل مصرف انرژی تا حد ممکن است تا از مزایای انتقال نیرو به قدر کافی بهره‌برداری شود. با به‌کارگیری ترانسفورماتور خشک این امر امکان‌پذیر است. 
۶) اگر در پست، مشکل برق پیش آید، خطری متوجه عایق ترانسفور ماتور نمی‌شود. زیرا منبع اصلی گرما یعنی تلفات در آن تولید نمی‌شود. به‌علاوه چون هوا واسطه خنک شدن است و هوا هم مرتب تعویض و جابه‌جا می‌شود، مشکلی از بابت خنک شدن ترانسفورماتور بروز نمی‌کند. 
سیستم نمایش و مدیریت ترانسفورماتورها (TMMS) 
سیستم TMMS (Transformer Monitoring Management System فارادی یک سیستم نمایش و مدیریت ترانسفورماتور است. 
سیستم TMMS براساس جمع‌آوری اطلاعات بحرانی بهره‌برداری ترانسفورماتور و تجزیه و تحلیل آنها عمل می‌نماید. 
سیستم TMMS با تجزیه و تحلیل اطلاعات قادر خواهد بود که ضمن تفسیر عملکرد ترانسفورماتور عیب‌های آن را تشخیص داده و اطلاعات لازم برای تصمیم‌گیری را در اختیار بهره‌بردار قرار دهد. 
اطلاعات بهره‌برداری که برای فرآیند نمایش و مدیریت ترانسفورماتورها مورد نیاز بوده و توسط سنسورهای مخصوص جمع‌آوری می‌گردند به شرح زیر می‌باشند. 
● گازهای موجود در روغن‌ ترانسفورماتورهمراه با ئیدران 
▪ آب موجود در روغن ترانسفورماتور همراه با Acquaoil ۳۰۰ 
▪ جریان بار ترانسفورماتور 
▪ دمای نقاط مختلف ترانسفورماتور 
▪ وضعیت تپ جنچر ترانسفورماتور 
▪ سیستم خنک کنندگی ترانسفورماتور 
اطلاعات بهره‌برداری فوق جمع‌آوری شده و به‌همراه سایر اطلاعات موجود به‌طور مستمر تجزیه و تحلیل شده تا بتوانند اطلاعات زیر را درباره وضعیت بهره‌برداری ترانسفورماتور تهیه نمایند. 
▪ شرایط عمومی و کلی ترانسفورماتور 
▪ ظرفیت بارگیری ترانسفورماتور 
▪ میل و شدت تولید گاز و جباب در داخل روغن ترانسفورماتور 
▪ ملزومات نگهداری ترانسفورماتور 
سیستم TMMS فارادی را می‌توان برای ترانسفورماتورهای موجود به‌کار برد و همچنین می‌توان آن را در ساختمان ترانسفورماتورهای جدید طراحی و نصب نمود.
ارتقاء سیستم TMMS فارادی با افزودن سنسورهای اضافی می‌توانید باعث ارتقاء عملکرد آن برای مواد زیر گردید. 
▪ حداکثر نمودن ظرفیت بارگذاری ترانسفورماتور برای بهره‌برداری اقتصادی و بهینه 
▪ تشخیص عیب و توصیه راه حل در ترانسفورماتورها 
▪ مدیریت عمر ترانسفورماتور و افزایش آن 
▪ تکمیل و توسعه فرایند و عملیاتی مدیریت ترانسفورماتورها با کمک اطلاعات اضافی تهیه شده در زمان حقیقی 
▪ کاهش و حذف خروجی ترانسفورماتورها به‌صورت برنامه‌ریزی شده و یا ناشی از خطا 
▪ آشکارسازی علائم اولیه پیدایش خطا در ترانسفورماتورها 
▪ نمایش مراحل تکامل و شکل‌گیری شرایط پیدایش خطا 
● ترانسفورماتورها سازگار با هارمونیک ترانسفورماتورهای عامل K 
هارمونیک‌های تولید شده توسط بارهای غیر خطی می‌توانند مشکلات حرارتی و گرمائی خطرناکی را در ترانسفورماتورهای توزیع استاندارد ایجاد نمایند. حتی اگر توان بار خیلی کمتر از مقدار نامی آن باشد، هارمونیک‌ها می‌توانند باعث گرمای بیش از حد و صدمه دیدن ترانسفورماتورها شوند. جریان‌های هارمونیکی تلفات فوکو را به شدت افزایش می‌دهند. به‌همین دلیل سازنده‌ها، ترانسفورماتورهای تنومندی را ساخته‌اند تا اینکه بتوانند تلفات اضافی ناشی از هارمونیک‌ها را تحمل کنند. سازنده‌ها برای رعایت استاندارد یک روش سنجش ظرفیت، به‌نام عامل K را ابداع کرده‌اند. عامل K نشان دهنده مقدار افزایش در تلفات فوکو است. بنابراین ترانسفورماتور عامل K می‌تواند باری به اندازه ظرفیت نامی ترانسفورماتور را تغذیه نماید مشروط بر اینکه عامل K بار غیر خطی تغذیه شده برابر با عامل K ترانسفورماتور باشد. مقادیر استاندارد عامل K برابر با ۴، ۹، ۱۳، ۲۰، ۳۰، ۴۰، ۵۰ می‌باشند. این نوع ترانسفورماتورها عملاً هارمونیک را از بین نبرده تنها نسبت به آن مقاوم می‌باشند. 
ترانسفورماتور (HMT (Harmonic Mitigating Transformer نوع دیگری از ترانسفورماتورهای سازگار با هارمونیک ترانسفورماتورهای HMT هستند که از صاف شدن بالای موج ولتاژ بهواسطه بریده شدن آن جلوگیری می‌کند HMT، طوری ساخته شده است که اعو جاج ولتاژ سیستم و اثرات حرارتی ناشی از جریان‌های هارمونیک را کاهش می‌دهد. HMT این کار از طریق حذف فلوها و جریان‌های هارمونیکی ایجاد شده توسط بار در سیم پیچی‌های ترانسفورماتور انجام می‌دهد.
چنانچه شبکه‌های توزیع نیروی برق مجهز به ترانسفورماتورهای HMT گردند می‌توانند همه نوع بارهای غیر خطی (با هر درجه از غیر خطی بودن) را بدون اینکه پیامدهای منفی داشته باشند، تغذیه نمایند. به همین دلیل در اماکنی که بارهای غیر خطی زیاد وجود دارد از ترانسفورماتور HMT به صورت گسترده استفاده می‌شود. 
● مزایای ترانسفورماتور HMT 
▪ می‌توان از عبور جریان مؤلفه صفر هارمونیک‌ها (شامل هارمونیک‌های سوم، نهم و پانزدهم) در سیم پیچ‌ اولیه، از طریق حذف فلوی آنها در سیم پیچی‌های ثانویه جلوگیری کرد. 
ترانسفورماتورهای HMT با یک خروجی در دو مدل با شیفت فازی متفاوت ساخته می‌شوند. وقتی که هر دو مدل با هم به‌کار می‌روند، می‌توانند جریان‌های هارمونیک پنجم، هفتم، هفدهم و نوزدهم را در قسمت‌ جلوئی شبکه حذف کنند. 
▪ ترانسفورماتورهای HMT با دو خروجی می‌توانند مؤلفه متعادل جریان‌های هارمونیک پنجم، هفتم، هفدهم و نوزدهم را در داخل سیم پیچی‌های ثانویه حذف کنند. 
▪ ترانسفورماتورهای HMT با سه خروجی می‌توانند مؤلفه‌ متعادل جریان‌های هارمونیک پنجم، هفتم، یازدهم و سیزدهم را در داخل سیم پیچی ثانویه حذف کنند. 
▪ کاهش جریان‌های هارمونیکی در سیم‌پیچی‌های اولیه HMT باعث کاهش افت ولتاژهای هارمونیکی و اعو جاج مربوطه می‌شود. 
کاهش تلفات توان به‌علت کاهش جریان‌های هارمونیکی به‌عبارت دیگر ترانسفورماتور HMT باعث ایجاد اعو جاج ولتاژ خیلی کمتری در مقایسه با ترانسفورماتورهای معمولی یا ترانسفورماتور عامل K می‌شود. 


 

نحوه تشخیص نوع سیستم خنک کننده ترانسفورماتورهای روغنی با قدرت متوسط

 

در ترانسفورماتورهای روغنی نوع سیستم خنک کننده آنها از طریق حروف اختصاری مشخص میشود که بر روی پلاک ترانسفورماتور درج شده است مثلا ONAN ,ONAF ,OFWF و... .

هر یک از حروف معرف یک قسمت از سیستم خنک کننده می باشند اما حرفی که در میان همه سیستمها مشترک می باشد حرف O است که معرف Oil به معنای روغن است.حرف دوم مربوط به نحوه گردش روغن است و حرفهای سوم و چهارم مربوط به هوا،آب و یا گاز با سیستم گردش آنها می باشد اما اسامی کامل حرفها و معنای آنها در جدول زیر آورده شده است:

روش گردش

نوع ماده خنک کننده

نوع گردش

حرف سمبولیک

نوع ماده

حرف سمبولیک

طیبعی

N

روغن معدنی

O

مصنوعی(با پمپ یا فن

F

روغن مصنوعی

L

جهت داده شده

D

هوا

A

 

 

گاز

G

 

 

آب

W

 

 چند مثال:

ONAN :سیستم خنک کننده روغن با گردش طبیعی  گردش هوا طبیعی

ONAF :  سیستم خنک کننده روغن با گردش طبیعی  گردش هوا از طریق فن

OFAF : سیستم خنک کننده روغن گردش از طریق پمپ  گردش هوا از طریق فن

OFAN : سیستم خنک کننده روغن گردش از طریق پمپ  گردش هوا طبیعی

ODAF : سیستم خنک کننده روغن به صورت جهت داده شده  گردش هوا از طریق فن

OFWF : سیستم خنک کننده روغن گردش از طریق پمپ  گردش آب از طریق پمپ

و ...


منبع: http://powercontrol.mihanblog.com

نظرات 0 + ارسال نظر
ایمیل شما بعد از ثبت نمایش داده نخواهد شد